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Abstract

We introduce variants of the variational image denoising method proposed by Blom-
gren, Mulet, Chan, and Wong [2], which interpolates between total-variation denoising
and isotropic diffusion denoising. We study how parameter choices affect results and allow
tuning between TV denoising and isotropic diffusion for respecting texture on one spatial
scale while denoising features assumed to be noise on finer spatial scales. Furthermore,
we prove existence and (where appropriate) uniqueness of minimizers. We consider both
L2 and L1 data fidelity terms.

1 Introduction

Measured images typically provide us with noisy, discretized versions of an observed scene.
In many important cases, high noise levels can make recognition of important features very
difficult. Therefore, effective denoising plays an important role in the processing and under-
standing of images. Approaches to image denoising have been developed along three main
lines: 1) wavelet-based methods—for example, methods based on wavelet thresholding intro-
duced by Donoho and Johnstone [7], 2) stochastic or statistical methods—a prominent example
is the Markov random field (MRF) approach introduced by Geman and Geman [11], and 3)
PDE/variational approaches. One variational approach that has attracted a great deal of at-
tention is the total variation method of Rudin, Osher and Fatemi [13] (ROF). The variational
problem is

min
u

J(u) =

∫
Ω

|∇u|+ λ

2

∫
Ω

|d− u|2. (1)

1



We are representing true or reconstructed images by a function u : Ω ⊂ R2 → R. The function
d represents the measured image, which we suppose is of the form u + η, the sum of the true
image and a noise component. Much of the attention the ROF approach has attracted is due to
the fact that the method simultaneously reduces noise and preserve edges. An older approach
is

min
u

J(u) =

∫
Ω

|∇u|2 +
λ

2

∫
Ω

|d− u|2, (2)

which differs from ROF in having the Dirichlet integral of u in place of the total variation of
u. The Euler-Lagrange equation for this model is a diffusion equation. The method is very
effective at removing noise but has the drawback of smearing or degrading edges in the image.
It is interesting to note that this smearing out depends on the curvature of the edges, so that
thresholding a smeared out edge does not recover the true edge or even a uniformly displaced
true edge.

The ROF method above suffers from staircasing, which is a noise induced introduction of
artificial steps or discontinuities into the reconstructed or denoised image. In an attempt to
reduce this effect, Blomgren, Chan, Mulet and Wong [2] suggested letting the exponent in the
regularization term depend on the image. Their functional,

J(u) =

∫
Ω

|∇u|p(|∇u|) +
λ

2

∫
Ω

|d− u|2, (3)

uses a decreasing function p such that p(0) = 2 and p(x) = 1 for all x greater than some M
to adapt the smoothing to the gradient in the image. In their paper, they show a numerical
example suggesting a reduction of staircasing.

More recently, Levine, Chen, Stanich, and Rao [12, 5] have looked at a variant of the method
suggested by Blomgren et al. They consider the case in which the exponent p(x) depends only
on the measured data d. To be more precise, they study

J(u) =

∫
Ω

φ(x,∇u) +
λ

2

∫
Ω

|u− d|2, (4)

where

φ(x, r) =

{
1

p(x)
|r|p(x) if |r| < ε

|r| − εp(x)−εp(x)

p(x)
if |r| ≥ ε

, (5)

ε > 0 is fixed, and p(x) is based on a smoothed version of the observed image d:

p(x) =
1

1 + k|∇Gσ ∗ d(x)|2
, (6)

where k and σ are parameters, and

Gσ(x) =
1

σ
e
−|x|2

4σ2 (7)

is a Gaussian smoothing kernel. The authors show existence and uniqueness of minimizers for
this functional, and develop a numerical method for computing them based on gradient descent.
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It is also interesting to note that in their discussion of inf-convolution for the combination
of the two convex functionals

∫
|∇u| and

∫
|∇u|2, Chambolle and Lions [3] introduce

F (u) =
1

2ε

∫
|∇u|<ε

|∇u|2 +

∫
|∇u|≥ε

(
|∇u| − ε

2

)
+

∫
Ω

|u− d|2 (8)

where ε is a parameter that must be chosen a priori. This is suggestive of, though not identical
to, the case of

p(x) =

{
2 if x < ε
1 if x ≥ ε

. (9)

2 Outline of paper

In this paper, we study

min
u

J(u) =

∫
Ω

|∇u|p(|∇u|) +
λ

2

∫
Ω

|d− u|q, q = 1 or 2 (10)

in two cases:

• Case 1: p(x) = P (|∇(Gδ ∗ d)(x)|); and

• Case 2: p(x) = P (|∇(Gδ ∗ u)(x)|),

where Gδ is a smoothing kernel.
We begin by introducing a simple numerical method for minimizing (10) for Case 1, and

explore the behavior of this functional and its dependence on the various parameters that define
the smoothing kernel Gσ and the exponent function p(x). We then prove existence and, in the
case of q = 2, uniqueness of minimizers in both cases.

3 The case p(x) = P (|∇(Gδ ∗ d)(x)|)
We choose q = 2 and p given by

p(x) = PM(|∇(Gδ ∗ d)(x)|2) (11)

where Gδ : R2 → R is a symmetric mollifier centered at 0 and supported on a disk of radius δ
with maximum height K. PM : R+ → [1, 2] is defined by

PM(x) =

{
2− 10x3

M3 + 15x4

M4 − 6x5

M5 if x ≤ M
0 if x > M

. (12)

The polynomial is the quintic polynomial with the properties PM(0) = 2, PM(M) = 1, P ′
M(0) =

0, P ′
M(M) = 0, P ′′

M(0) = 0,and P ′′
M(M) = 0. See Figure 1.

The parameter M prescribes the size of a derivative required to consider total-variation
denoising to be locally the best option.
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Figure 1: (Left) PM function from (12). (Right) Gδ(x) function for regularizing gradients in
the exponent in J(u).

Note that our functional,

J(u) =

∫
Ω

|∇u|PM◦(|∇(Gδ∗d)|2) +
λ

2
‖d− u‖2

L2(Ω), (13)

uses only the initial data d to control the level of regularization.
We should note that this case is significantly simpler than Case 2, in which d is replaced by

u. One way to see this is by comparing the formal Euler-Lagrange equation for the two cases.
For Case 1 which we are considering here, the Euler-Lagrange equation is

0 = −∇ ·
[
∇u

|∇u|
PM ◦ (|∇(Gδ ∗ d)|2)|∇u|PM◦(|∇(Gδ∗d)|2)−1

]
+ λ(u− d). (14)

For Case 2, the Euler-Lagrange equation is

0 = −Gδ ∗ ∇ ·
[
|∇u|PM◦(|∇(Gδ∗u)|2)P ′ ◦ (|∇(Gδ ∗ u)|2)2∇(Gδ ∗ u)

]
−∇ ·

[
|∇u|PM◦(|∇(Gδ∗u)|2) ∇u

|∇u|

]
+ λ(u− d). (15)

Our implementation of gradient descent using the Euler-Lagrange equation is entirely straight-
forward. Taking gn

i,j to be a standard finite difference approximation of the right hand side of
(14) at xi,j and tn, we get an Euler-like updating scheme,

un+1
i,j = un

i,j + ∆tgn
i,j. (16)

We use an adaptive step size scheme. The new value un+1
i,j is accepted for each step in which

the cost is improved, J(un+1
i,j ) < J(un

i,j), and the step ∆t is increased by a factor ∆t → s∆t,

s > 1. For each unsuccessful step where J(un+1
i,j ) ≥ J(un

i,j), the trial step is not used, and the
step size is decreased, ∆t → s∆t, s < 1.
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3.1 Binary image example: edges, texture and noise

In this section we investigate the ability of the functional in (13) to preserve or recover edges,
smooth sections, and texture, while removing noise. Making the necessary distinctions is an
inherently ill-defined task. Noise, when viewed at one scale, can look very much like texture on
another scale. Separating noise and texture depends on having a separation of scale between
them. Thus, the best we can hope for is a method which preserves texture on one spatial scale,
while removing noise at smaller spatial scales.

We now turn to a detailed exploration of a simple example. Figure 2 shows I, our one-
dimensional binary test image. I is given by

I(x) = A floor(x/L) mod 2, (17)

and is a one-dimensional model of a noiseless image with texture of spatial period 2L and
amplitude A. The measured data d is given by

d(x) = I(x) + noise = I(x) +N (0, σ), (18)

where N (0, σ) is Gaussian noise with standard deviation σ and mean 0. The resulting 7
parameters—M , K, δ, L, A, σ, and λ—interact to influence the precise nature of the minimizer
to (13).

I(x)

x

0

A

−3L −2L −L 0 L 2L 3L 4L−4L

Figure 2: Binary test image in one dimension designed to explore noise versus texture scales
in denoising procedure when choosing parameters δ, M , and K.

There are at least two parametric dichotomies that are relevant:

• AK > M vs. AK < M : this dichotomy tells us whether or not edges of the test image
are preserved or degraded.

– If AK > M , there is an interval around each edge where |∇(Gδ ∗ I)(x)|2 > M . If
the noise level is not too large, then |∇(Gδ ∗ d)(x)|2 > M as well, so that p(x) = 1.
This means that the denoising is locally like total-variation denoising around each
edge, and the edges are preserved. See Figure 3.
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– If AK < M , then |∇(Gδ ∗ I)(x)|2 is always less than M . Assuming a reasonable
noise level, p(x) > 1 for all x in the image. The resulting diffusion not only smooths
out the noise, but also rounds off the edges. See Figure 4.

• 2δ >> L vs. 2δ ≤ L: This determines whether or not the square wave, now thought of
as texture, is preserved or smoothed out.

– If 2δ ≤ L, the smoothing kernel acts on a spacial scale that is too small to smooth
out the texture. Examples are Figures 3 and 4, where the texture is preserved by
the denoising process.

– If 2δ >> L, the smoothing kernel does not distinguish the texture from noise. See
Figure 5.
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Figure 3: Edges preserved: The p(x) function resulting from the data image in lower right is
shown in the upper right. AK > M implies an interval around edges where optimization of
the functional (13) behaves locally as total-variation denoising. Notice the edges at each L are
well preserved as desired, and the smaller-scaled noise is smoothed.

Finally there is the issue of the relation between noise and features such as edges or texture.
If there is a separation in spatial scale between the noise and the texture or if there is a
separation in amplitude between the noise and edge heights, δ, K, and M can be chosen to
eliminate noise while preserving edges or texture or both. We must have δ large enough to
smooth out the noise oscillation without being so large that either the edges are degraded or
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Figure 4: Edges degraded: The p(x) function resulting from the data image in lower right
is shown in the upper right. AK < M implies that around the edges, optimization of the
functional (13) behaves locally as a diffusion. Notice the edges at each L are rounded due to
the fact that diffusion does not respect edges, as does total-variation denoising.
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Figure 5: Texture smoothed: the small scale of the texture (L = 1/4) in relation to the scale
of the smoothing kernel (δ = 10) results in the texture being smoothed away like noise.
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the texture smoothed. Since this depends on σ, A, and L characterizing the measured image,
we cannot choose our parameters δ, K, and M a priori.

3.2 Natural image examples

We now show the results of the data driven exponent function p(x) on natural images. See
Figures 6–9.

As expected, results depend on our ability to tune δ, K, and M to recover texture and edges
while removing noise. We see in the images shown that this closely relates to building a PM

function which is essentially equivalent to edge detection. Taking this hint, the next subsection
discusses a surrogate for the exponent function p(x) based on a simple edge detection method.

3.3 A surrogate for p(x) = PM(|∇(Gσ∗d)(x)|2): PE(x) from Canny edge
detection.

A simplification can be obtained by first detecting edges and then building the exponent func-
tion based on the results from the edge detection. For convenience, we chose to pass an image
to the Canny edge detection algorithm in the Matlab image processing toolbox. Let Zm,n

256 be
the space of 8-bit, gray scale, m by n pixellated images. Then a three color image can be rep-
resented by I ∈ (Zm,n

256 )3 in which each of the color planes describes one of the RGB channels.
An edge detection algorithm can be represented by a function

E : (Zm,n
256 )3 → (Zm,n

2 )3. (19)

The 3 edge images or planes are binary images in each color plane with a value 0 away from
edges and a value 1 at detected edges. Using this we define

PE(I) = 2−Gδ ∗ E(I), (20)

where 2 is an m×n×3 array of 2s, and E(I) is the edge image from the edge detection scheme.
The convolution with Gδ smooths the transition from detected edges to flat regions. The results
are shown in Figures 10 and 11.

The edge detection algorithm finds different edges in each of the three color planes. It is
our opinion that the different edges in each of the three color planes leads to a more natural
(3-dimensional) appearance of the denoised minimizer u shown in Figure 10.

4 Existence and uniqueness of minimizers

In this section we give proof of existence of a minimizer of the variable exponent gradient
based functional. References for the theorems and results used in this section are [9, 8, 6, 10].
Throughout, Ω is a bounded open subset of Rm. For d and u in BV (Ω), consider

J(u) = F (u) + P (u), (21)
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Figure 6: (Upper Left) The original picture “Pumpkin Heads.” The red horizontal line through
the middle depicts the location of the 1d-slice shown in Figure (7). (Upper Right) The exponent
p(x) is computed based on the polynomial (12); this exponent “mask” is shown for each of the
three color planes, for the most recent iteration, using the scheme that the exponent p(x) is a
function of the current best u. See also a slice of p(x) in Figure 7. (Lower Left) The cleaned
image. Apparently, the fact that different edges are detected in each of the different color
planes, shown (Upper Right), lends to a more natural result, with a more three-dimensional
appearance. (Lower Right) The noisy initial condition, d(x) = I(x) + noise.
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Figure 7: A 1d slice of the Pumpkins Head data shown in Figure 6 shown at the position
along the horizontal red line depicted in Figure 6 (Upper Left). Note the exponent ranges from
1 ≤ p(x) ≤ 2.
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Figure 8: No paper in image processing is complete without a picture of this lady, the ubiquitous
Lena. The white horizontal line shows the location of the 1d slice plots shown in Figure 9. All
relevant arrangements are as in Pumpkin Heads, Figure 6.
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Figure 9: The 1d-slice of Lena, at the location of the horizontal white line across Lena’s nose
in Figure 8 (Upper Left).
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original Pumpkin Heads p−exponent mask built with aid of Canny Edge Detection
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Figure 10: The exponent p(x) is pre-computed based on the popular Canny edge detection
scheme. In the upper right, the edges detected from the noisy image in the lower left, are
somewhat different in each of the three color planes. This lends to a different balancing of
diffusion and total-variation-based smoothing in each of the three color planes, yielding a more
natural looking final denoised image, with a better three-dimensional appearance, shown in
lower left. The white horizontal line through the middle of the clean image in the upper right
clean image shows in which 1d slice image Figure 11 is made.
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Figure 11: A 1d slice of the Pumpkins image Figure 10 is made, at the position of the white
line shown in Figure 10.

where F (u) is a generalized regularization term

F (u) =

∫
Ω

|∇u|p̃ (22)

and the data fidelity term P (u) is either

P (u) =

∫
Ω

|d− u| = ‖d− u‖1, (23)

or

P (u) =

∫
Ω

|d− u|2 = ‖d− u‖2
2. (24)

We are most interested in the two cases

p̃ = p(u) = p0 ◦ (|∇(Gδ ∗ u)|2), (25)

p̃ = p(d) = p0 ◦ (|∇(Gδ ∗ d)|2) (26)

where Gδ is a C2∩W 3,2 mollifier supported on |x| ≤ δ and p0 : [0,∞) → [1, 2] is a nonincreasing
C2 function with p0(M) = 1 for some M > 0.
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We now rewrite F (u) in a form that will allow for computation of weak derivatives. For
p ≥ 1, the smooth convex function x 7→ xp is the supremum of all its tangent lines. Computing
the value at x = |t| of the tangent line with slope ν ≥ 0 gives that

|t|p = max
ν

(
pν(p−1)|t| − (p− 1)νp

)
. (27)

Thus, at a fixed x,

|∇u(x)|p̃ = max
ν≥0

(
p̃ν p̃−1|∇u(x)| − (p̃− 1)ν p̃

)
(28)

= max
ν≥0
|σ|≤1

(
p̃ν p̃−1σ · ∇u(x)− (p̃− 1)ν p̃

)
. (29)

This suggests that we can write

F (u) = max
ν(x)≥0
|σ(x)|≤1

∫ (
p̃ν p̃−1σ · ∇u− (p̃− 1)ν p̃

)
(30)

and then integrate by parts to eliminate dependence on derivatives of u. The precise definition
we will use is

F (u) = sup
ν,σ

∫ (
∇ · (p̃ν p̃−1σ)u− (p̃− 1)ν p̃

)
, (31)

where ν ranges over the set of C1(Ω) functions with positive minimum, and σ ranges over
functions in

(
C1

c (Ω)
)m

with |σ| ≤ 1.
We will show that if u and p̃ are C1, then equations (22) and (31) agree.
Note that for 1 ≤ p ≤ 2 and x ≥ 0,

x ≤ xp +
1

4
. (32)

Therefore, for either p̃ = p(u) or p̃ = p(d),

TV (u) =

∫
|∇u| ≤

∫
|∇u|p̃ +

1

4
Vol(Ω). (33)

This inequality holds in the weak formulation as well: choose ν = p̃−1/(p̃−1). Then

∇ · (p̃ν p̃−1σ)u− (p̃− 1)ν p̃ = (∇ · σ)u−
[(

p̃−1/(p̃−1)
)
−

(
p̃−1/(p̃−1)

)p̃
]
≥ (∇ · σ)u− 1

4
. (34)

Integrating and taking the supremum gives

F (u) ≥ TV (u)− 1

4
Vol(Ω), (35)

since the total variation is defined weakly [1] as

TV (u) = sup

{∫
Ω

u∇ · σ : σ ∈ C1
c (Ω), |σ| ≤ 1

}
. (36)
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4.1 The weak-derivative formulation of F (u)

In this section we show that when u and p are smooth functions, then the supremum in (31) is∫
|∇u|p̃(x). The advantage, of course, is that (31) is defined on a larger class of functions. Let

u, p̃ be in C1(Ω) with 1 ≤ p̃ ≤ 2. Also let ν and σ be functions with ν(x) > 0 and |σ(x)| ≤ 1
for all x. Fix x ∈ Ω; then (29) shows that

|∇u(x)|p̃(x) ≥ p̃(x)ν(x)p̃(x)−1σ(x) · ∇u(x)− (p̃(x)− 1)ν(x)p̃(x), (37)

and therefore for C1 functions,∫
Ω

|∇u|p̃ ≥ sup

∫ (
∇ · (p̃ν p̃−1σ)u− (p̃− 1)ν p̃

)
, (38)

since the minus sign from integrating by parts can be absorbed into σ.

Lemma 1. Let u ∈ C1
(
Ω

)
. Let ε > 0. Then there is a σ ∈

(
C1

c (Ω)
)m

such that |σ| ≤ 1 and∣∣∣∣∫ |∇u|p̃ −
∫ (

p̃|∇u|p̃−1σ · ∇u− (p̃− 1)|∇u|p̃
)∣∣∣∣ < ε. (39)

Proof. Put K = max{|∇u| : u ∈ Ω}. If |∇u| ≤ 1, then |∇u|p ≤ 1 for any 1 ≤ p ≤ 2. If
|∇u| > 1, then |∇u|p ≤ K2 for any p between 1 and 2. In either event |∇u|p ≤ K2 + 1.

Let w(x) = sgn(∇u(x)). Then∫
|∇u|p̃ =

∫
|∇u|p̃−1w · ∇u. (40)

Choose σ to be a C1
c function such that ‖w − σ‖1 <

ε

2(K2 + 1)
. Then∣∣∣∣∫ |∇u|p̃ −

∫ (
p̃|∇u|p̃−1σ · ∇u− (p̃− 1)|∇u|p̃

)∣∣∣∣ =

∣∣∣∣∫ p̃|∇u|p̃−1(σ − w) · ∇u

∣∣∣∣ (41)

≤ 2(K2 + 1)‖w − σ‖1 < ε. (42)

Lemma 2. Let u ∈ C1(Ω). Let ε > 0. Then there is σ ∈
(
C1

c (Ω)
)m

and ν ∈ C1(Ω) such that
σ, ν satisfy |σ| ≤ 1, ν > 0 and∣∣∣∣∫ |∇u|p̃ −

∫ (
p̃ν p̃−1σ · ∇u− (p̃− 1)ν p̃

)∣∣∣∣ < ε. (43)

Proof. Let K and σ be as in the previous lemma. Since 0 ≤ |∇u| ≤ K on Ω, there is a sequence
(ρn) of C1 functions satisfying 0 ≤ ρn ≤ K converging to |∇u|. Put νn = ρn + 1/n; then each
νn is also C1, (νn) converges pointwise to |∇u|, and each νn > 0.

The νn are uniformly bounded by K + 1 and converge pointwise to |∇u|, so p̃ν p̃−1
n σ · ∇u−

(p̃− 1)νn converges pointwise to p̃|∇u|p̃−1σ ·∇u− (p̃− 1)|∇u| and is uniformly bounded on the
bounded set Ω. Therefore the integral converges to the integral of the limit, so there is n such
that ∣∣∣∣∫ (

p̃ν p̃−1
n σ · ∇u− (p̃− 1)ν p̃

n

)
−

∫ (
p̃|∇u|p̃−1σ · ∇u− (p̃− 1)|∇u|p̃

)∣∣∣∣ < ε. (44)

Combining this with the result of the previous lemma gives the desired result.
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4.2 On existence of a minimizer

We will prove that the functional J defined in (21) has a minimizer in either of the two cases
of p̃(x) given in (25) or (26), and in either of the two cases of P given in (23) or (24).

For u ∈ L1(Ω), define p(u) = p0 ◦ (|∇(Gδ ∗ u)|2) where the properties of p0 and Gδ are as at
the beginning of Section 4.

Let H ⊂ C1(Ω) be the subset of functions p̃ with 1 ≤ p̃(x) ≤ 2.

Lemma 3. The map u 7→ |∇(Gδ ∗ u)|2 maps L1(Ω) to C1(Ω) continuously.

Proof. Note that(
∂j(Gδ ∗ u2)

)2 −
(
∂j(Gδ ∗ u1)

)2
=

(
(∂jGδ) ∗ (u2 + u1)

)(
(∂jGδ) ∗ (u2 − u1)

)
. (45)

Therefore∥∥∥(
∂j(Gδ ∗ u2)

)2 −
(
∂j(Gδ ∗ u1)

)2
∥∥∥
∞
≤ ‖(∂jGδ) ∗ (u2 + u1)‖∞ ‖(∂jGδ) ∗ (u2 − u1)‖∞ (46)

and∥∥∥∥∂i

[(
∂j(Gδ ∗ u2)

)2 −
(
∂j(Gδ ∗ u1)

)2
]∥∥∥∥

∞
≤ ‖(∂i∂jGδ) ∗ (u2 + u1)‖∞ ‖(∂jGδ) ∗ (u2 − u1)‖∞

+ ‖(∂jGδ) ∗ (u2 + u1)‖∞ ‖(∂i∂jGδ) ∗ (u2 − u1)‖∞ .

(47)

Suppose u1, u2 ∈ L1(Ω). Then for any smooth function K, Young’s inequality gives

‖K ∗ (u2 ± u1)‖∞ ≤ ‖K‖∞‖u2 ± u1‖1. (48)

(The smoothness requirement on K is only to ensure that the convolution is continuous.)
Applying this inequality to (46) and (47),∥∥∥(

∂j(Gδ) ∗ u2)
)2 −

(
∂j(Gδ ∗ u1)

)2
∥∥∥

C1
≤ C‖Gδ‖2

C2‖u2 + u1‖1‖u2 − u1‖1. (49)

Hence for each j,
(
∂j(Gδ ∗ ·)

)2
maps L1(Ω) to C1 continuously. The proof is now complete,

since |∇(Gδ ∗ u)|2 is the sum over j of these functions.

Lemma 4. The map s 7→ p0 ◦ s maps C1(Ω, R+) to H continuously.

Proof. Let s1, s2 ∈ C1(Ω, R+). Since p0 is differentiable, the mean value theorem gives∥∥p0 ◦ s1 − p0 ◦ s2

∥∥
∞ ≤ ‖p′0‖∞‖s2 − s1‖∞. (50)

Hence s 7→ p0 ◦ s maps C(Ω, R+) to C(Ω) continuously. We also have

|∂i(p ◦ s2)− ∂i(p ◦ s1)| = |(p′0 ◦ s2)∂is2 − (p′0 ◦ s1)∂is1| (51)

≤ |p′0 ◦ s2| |∂is2 − ∂is1|+ |p′0 ◦ s2 − p′0 ◦ s1||∂is1| (52)

≤ |p′0 ◦ s2| |∂is2 − ∂is1|+ ‖p′′0‖∞|s2 − s1||∂is1| (53)

≤ ‖p′0‖∞‖s2 − s1‖C1 + ‖p′′0‖∞‖s2 − s1‖∞‖s1‖C1 . (54)

Hence s 7→ p0◦s maps C1(Ω, R+) to C1(Ω) continuously; finally, p0◦s ∈ H because 1 ≤ p0(x) ≤
2.
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Lemma 5. Let ν ∈ C1(Ω) such that ν > 0. Then the map p 7→ νp−1 maps H to C1(Ω)
continuously, and H to W 1,2 continuously.

Proof. Let K = max | log ν| < ∞. Then νp−1 ≤ eK for any p ∈ H. Therefore for any p1, p2,

|νp2−1 − νp1−1| = |νp1−1||νp2−p1 − 1| (55)

≤ eK | exp((p2 − p1) log ν)− 1| (56)

≤ 1
K

eK(eK − 1)‖p2 − p1‖∞, (57)

since |ex − 1| ≤ (ea − 1)|x|/a for −a ≤ x ≤ a, and |(p2 − p1) log ν| ≤ K.
Thus

‖νp2−1 − νp1−1‖∞ ≤ C1‖p2 − p1‖∞, (58)

‖νp2−1 − νp1−1‖2 ≤ C1Vol(Ω)‖p2 − p1‖∞, (59)

where C1 depends only on K.
The derivatives satisfy

|∂iν
p2−1 − ∂iν

p1−1| (60)

= |∂i((p2 − 1) log ν)νp2−1 − ∂i((p1 − 1) log ν)νp1−1| (61)

≤ |∂i((p2 − 1) log ν)− ∂i((p1 − 1) log ν)||νp2−1|+ |∂i((p1 − 1) log ν)||νp2−1 − νp1−1| (62)

≤ eK |∂i((p2 − 1) log ν)− ∂i((p1 − 1) log ν)|+ C1|∂i((p1 − 1) log ν)| · ‖p2 − p1‖∞. (63)

For the first term,

|∂i((p2 − 1) log ν)− ∂i((p1 − 1) log ν)| ≤ |∂i(p2 − p1) log ν|+
∣∣∣∣(p2 − p1)

∂iν

ν

∣∣∣∣ (64)

≤ ‖p2 − p1‖C1K + ‖p2 − p1‖∞‖ν‖C1/ min ν. (65)

For the second term,

|∂i((p1 − 1) log ν)| =
∣∣∣∣(p1 − 1)

∂iν

ν
+ (∂ip1) log ν

∣∣∣∣ (66)

≤ ‖ν‖C1

min ν
+ K‖p1‖C1 . (67)

Thus
|∂iν

p2−1 − ∂iν
p1−1| ≤ C2‖p2 − p1‖C1 + C3‖p1‖C1‖p2 − p1‖∞ (68)

where C2 and C3 depend only on ν. We now have

‖νp2−1 − νp1−1‖C1 ≤ (C1 + C2 + C3‖p1‖C1)‖p2 − p1‖C1 (69)

‖νp2−1 − νp1−1‖W 1,2 ≤ Vol(Ω)(C1 + C2 + C3‖p1‖C1)‖p2 − p1‖∞ (70)

Thus we see that p 7→ νp−1 is continuous in the spaces named.
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Lemma 6. Let ν : Ω → [c,∞) with c > 0, and σ : Ω → Rn be C1 functions, and suppose that
σ has compact support. Then the map p 7→ pνp−1σ maps H to C1

c continuously, and to W 1,2

continuously.

Proof. The Leibniz rule implies that for any f, g, ‖fg‖C1 ≤ 2‖f‖C1‖g‖C1 , and hence that
‖f2g2−f1g1‖C1 ≤ 2‖f2−f1‖C1‖g2‖C1 +2‖f1‖C1‖g2−g1‖C1 . Therefore the product of continuous
maps into C1 is a continuous map into C1.

Similarly, if f ∈ C1 and g ∈ W 1,2, then fg ∈ W 1,2; and if f1, f2 ∈ C1 and g1, g2 are in W 1,2,
then

‖f2g2 − f1g1‖2 ≤ ‖f2 − f1‖∞‖g2‖2 + ‖f1‖∞‖g2 − g1‖2. (71)

Also,

‖∂i(f2g2 − f1g1)‖2

≤ ‖∂i(f2 − f1)‖∞‖g2‖2 + ‖f2 − f1‖∞‖∂ig2‖2 + ‖∂if1‖∞‖g2 − g1‖2 + ‖f1‖∞‖∂i(g2 − g1)‖2

≤ 2
(
‖f2 − f1‖C1‖g2‖W 1,2 + ‖f1‖C1‖g2 − g1‖W 1,2

)
. (72)

Consequently, if f, g are continuous maps from some function space into C1 and W 1,2, then
fg is a continuous map into W 1,2. The result now follows because p 7→ pσ is a continuous map
into C1, and p 7→ νp−1 is a continuous map into W 1,2.

Lemma 7. Let ν and σ be as in the previous lemma. Then the map p 7→ (p− 1)νp maps H to
L1(Ω) continuously.

Proof. Let K = max | log ν| < ∞. Fix p1 ∈ H and consider p2 ∈ H close to p1. Then the
procedure used in (55)–(57) gives us

|νp2 − νp1| ≤ 1

K
e2K(eK − 1)‖p2 − p1‖∞, (73)

where in this instance we have |νp| ≤ (eK)p ≤ e2K . Therefore

‖νp2 − νp1‖1 ≤ Vol(Ω)
1

K
e2K(eK − 1)‖p2 − p1‖∞, (74)

which approaches zero as p2 → p1 in C1.

We can now prove the following theorems:

Theorem 8. Let δ > 0, d ∈ L1(Ω). Let p0 : [0,∞) → [1, 2] be a nonincreasing C2 function
such that p0(M) = 1 for some M . Define p(d) = p0 ◦ |∇(Gδ ∗ d)|2. Then Fd defined by

Fd(u) = sup
(ν,σ)∈E

∫
Ω

(
∇ · (p(d)νp(d)−1σ)u− (p(d)− 1)νp(d)

)
, (75)

where
E =

{
(ν, σ) : ν ∈ C1

c (Ω), ν > 0, σ ∈
(
C1

c (Ω)
)m

), |σ| ≤ 1
}

, (76)

is a lower semicontinuous function on L1(Ω).

20



Proof. Let u, v ∈ L1(Ω). Fix (ν, σ) ∈ E. Then p(d) ∈ H, so ∇ · (p(d)νp(d)−1σ) is continuous by
Lemmas 3, 4, and 6. Therefore∣∣∣∣∫

Ω

(
∇ ·

(
p(d)νp(d)−1σ

)
u− (p(d)− 1)νp(d)

)
−

∫
Ω

(
∇ ·

(
p(d)νp(d)−1σ

)
v − (p(d)− 1)νp(d)

)∣∣∣∣ (77)

≤ ‖∇ · (p(d)νp(d)−1σ)‖∞ ‖u− v‖1. (78)

Thus, the map

u 7→
∫

Ω

(
∇ ·

(
p(d)νp(d)−1σ

)
u− (p(d)− 1)νp(d)

)
(79)

is continuous on L1. Since Fd(u) is the supremum of a family of continuous maps, it is lower
semicontinuous on L1.

Theorem 9. Let δ, p0, and E be as in Theorem 8; for u ∈ L1(Ω), define p(u) = p0◦|∇(Gδ∗u)|2.
Then the function F given by

F (u) = sup
(ν,σ)∈E

∫
Ω

(
∇ ·

(
p(u)νp(u)−1σ

)
u− (p(u)− 1)νp(u)

)
(80)

is a lower semicontinuous function on L1(Ω).

Proof. The outline of the proof is the same as that of Theorem 8, but there are additional
details. Let u ∈ L1. Fix (ν, σ) ∈ E. Then ∇ ·

(
p(u)νp(u)−1

)
is continuous by Lemmas 3, 4, and

6. Given ε > 0 we can choose v L1-close enough to u that∥∥∇ ·
(
p(u)νp(u)−1σ

)
−∇ ·

(
p(v)νp(v)−1σ

)∥∥
∞ < ε (81)

by Lemmas 3, 4, and 6, and∥∥(p(u)− 1)νp(u) − (p(v)− 1)νp(v)
∥∥

1
< ε (82)

by Lemmas 3, 4, and 7. Then∣∣∣∣∫
Ω

(
∇ ·

(
p(u)νp(u)−1σ

)
u− (p(u)− 1)νp(u)

)
−

∫
Ω

(
∇ ·

(
p(v)νp(v)−1σ

)
v − (p(v)− 1)νp(v)

)∣∣∣∣
≤

∥∥∇ ·
(
p(u)νp(u)−1σ

)∥∥
∞ ‖u− v‖1 +

∥∥∇ ·
(
p(u)νp(u)−1σ

)
−∇ ·

(
p(v)νp(v)−1σ

)∥∥
∞ ‖v‖1

+
∥∥(p(u)− 1)νp(u)−1 − (p(v)− 1)νp(v)−1

∥∥
1

≤K(u)‖u− v‖1 + ε
(
‖u− v‖1 + ‖u‖1

)
+ ε,

(83)

where K(u) and ‖u‖1 are bounded quantities for any fixed u ∈ L1. The continuity of

u 7→
∫ (

∇ ·
(
p(u)νp(u)−1σ

)
u− (p(u)− 1)νp(u)

)
(84)

for fixed ν, σ now follows, and from that fact we get the lower semicontinuity of F .
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Theorem 10. Let d ∈ L1(Ω), and let Fd and F be as in Theorems 8 and 9. For u ∈ L1(Ω)
let Jd(u) = Fd(u) + ‖u− d‖1 and J(u) = F (u) + ‖u− d‖1. Then Jd and J have minimizers in
L1(Ω). The minimizers need not be unique.

Proof. By (35), J is bounded below. Let (un) be a minimizing sequence for J . Also by (35),

J(un) =

∫
Ω

|∇un|p(u) + ‖un − d‖1 ≥ TV (un)− 1

4
Vol(Ω) + ‖un‖1 − ‖d‖1. (85)

The tail of the sequence J(un) is bounded; therefore, so are the tails of the sequences TV (un)
and ‖un‖1. Hence the minimizing sequence is bounded in BV . Since BV is precompact in L1

([1], Theorem 3.23), there is a minimizing sequence that converges in L1. By Theorem 9, F ,
and hence J , is lower semicontinuous on L1. Therefore the limit of the convergent minimizing
sequence is a minimizer.

The proof for Jd is exactly the same.
The example we will use to show nonuniqueness is taken from [4]. For r > 0, let d = χB(0,r),

and consider u = cd for c ∈ [0, 1]. For a chosen M , if δ is sufficently small, we will have
both p(d)(x) = 1 and p(u)(x) = 1 for |x| near r. Since ∇u(x) = 0 for |x| 6= r, we have that
Fd(u) = F (u) = TV (u) = 2πrc. Then Jd(u) = J(u) = 2πrc + λπr2(1− c). If λ = 2/r, we have
that Jd(u) = J(u) = 2πr for all c. As explained in [4], any minimizer u must be of this form,
so we have that u is a minimizer for all c.

We also want to show that there exist minimizers as functionals on L2(Ω). However, the
proof above does not work for L2, because BV is not precompact in L2. However, L2 is reflexive,
so we may use the boundedness of the minimizing sequence to obtain a weakly convergent
subsequence.

Theorem 11. Let d ∈ L2(Ω) be given; define E, p(d) as in Theorem 8. Then

Fd(u) = sup
(ν,σ)∈E

∫
Ω

(
∇ ·

(
p(d)νp(d)−1σ

)
u− (p(d)− 1)νp(d)

)
(86)

is weakly lower semicontinuous on L2(Ω), and therefore

Jd(u) = Fd(u) + ‖u− d‖2
2 (87)

has a minimizer. The minimizer is unique.

Proof. Suppose un ⇀ u weakly in L2. Fix (ν, σ) ∈ E. Since ∇ ·
(
p(d)νp(d)−1σ

)
is in L2,∫

∇ ·
(
p(d)νp(d)−1σ

)
un →

∫
∇ ·

(
p(d)νp(d)−1σ

)
u. (88)

Also, (p(d)− 1)νp(d) ∈ L1, so∫ (
∇ ·

(
p(d)νp(d)−1σ

)
u− (p(d)− 1)νp(d)

)
= lim

∫ (
∇ ·

(
p(d)νp(d)−1σ

)
un − (p(d)− 1)νp(d)

)
≤ lim Fd(un).

(89)
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Weak lower semicontinuity now follows from taking suprema over ν and σ.
Let un be a minimizing sequence for Jd(u). Then the tail of un is bounded in L2, so un

has a subsequence that weakly converges, say to u0. Since Fd and ‖ · − d‖2
2 are weakly lower

semicontinuous, Jd is weakly lower semicontinuous as well. Therefore u0 is a minimzer of Jd.
To show uniqueness, observe from (86) that Fd(u) is a supremum of affine functions of u.

Thus Fd is convex. Since u 7→ ‖u − d|22 is strictly convex, Jd is strictly convex. Therefore its
minimizer is unique.

Theorem 12. Define E, p(u)as in Theorem 9. The functional F defined by

F (u) = sup
(ν,σ)∈E

∫
Ω

(
∇ ·

(
p(u)νp(u)−1σ

)
u− (p(u)− 1)νp(u)

)
(90)

is weakly lower semicontinuous on L2(Ω), and therefore

J(u) = F (u) + ‖u− d‖2
2 (91)

has a minimizer.

Proof. Let un ⇀ u weakly in L2(Ω). The boundary of Ω is a set of measure zero, so we can
treat un, u as elements of L2(Ω). Since ‖un‖2 is bounded, say by M , we have the estimates

‖∂iGδ ∗ un‖∞ ≤ ‖∂iGδ‖2‖un‖2 ≤ M‖Gδ‖W 1,2 (92)

so that {∂iGδ ∗ un} is uniformly bounded; and

‖∂j∂iGδ ∗ un‖∞ ≤ ‖∂j∂iGδ‖2‖un‖2 ≤ M‖Gδ‖W 2,2 (93)

so that {∂iGδ ∗ un} is equicontinuous.
Now for each x ∈ Ω, the functional f 7→ (∂iGδ ∗ f)(x) is a bounded linear functional on L2,

so that the weak convergence of un gives that ∂iGδ ∗ un → ∂iGδ ∗ u pointwise.
Since the sequence (∂iGδ ∗ un) is equicontinuous, the convergence is in fact uniform. The

same argument applied to the second and third derivatives of Gδ shows that the convergence
is in C1.

Lemma 4 now shows that p(un) converges to p(u) in H. Fix (ν, σ) ∈ E. Then Lemma 6
shows that∇·

(
p(un)νp(un)−1σ

)
converges strongly in L2 to∇·

(
p(u)νp(u)−1σ

)
, and Lemma 7 gives

that (p(un)−1)νp(un) converges strongly in L1 to (p(u)−1)νp(u). Define qn = ∇·
(
p(un)νp(un)−1σ

)
and q = ∇ ·

(
p(u)νp(u)−1σ

)
. Then qn → q in L2. Hence∣∣∣∣∫ qnun −

∫
qu

∣∣∣∣ ≤ ‖qn − q‖2‖un‖2 +

∣∣∣∣∫ q(un − u)

∣∣∣∣ → 0, (94)

due to the weak convergence of (un) to u. Then if we let

fν,σ(v) =

∫ (
∇ ·

(
p(v)νp(v)−1σ

)
v − (p(v)− 1)νp(v)

)
, (95)

we have
fν,σ(u) = lim fν,σ(un) ≤ lim F (un). (96)

Taking the supremum over (ν, σ) ∈ E, we see that F is weakly lower semicontinuous.
The weak lower semicontinuity of J and the existence of a minimizer follows in exactly the

same way as in Theorem 11.
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